82 research outputs found

    Tectonics, volcanism, landscape structure and human evolution in the African Rift

    Get PDF
    Tectonic movements and volcanism in the African Rift have usually been considered of relevance to human evolution only at very large geographical and chronological scales, principally in relation to longterm topographic and climatic variation at the continental scale. At the more loca1 scale of catchment basins and individual sites, tectonic features are generally considered to be at worst disruptive and at best incidental features enhancing the preservation and exposure of early sites. We demonstrate that recent lava flows and fault scarps in a tectonically active region create a distinctive landscape structure with a complex and highly differentiated topography of enclosures, barriers and fertile basins. This landscape structure has an important potential impact on the co-evolution of prey-predator interactions and on interspecific relationships more generally. In particular, we suggest that it would have offered unique opportunities for the development of a hominid niche characterised by bipedalism, meat-eating and stone tool use. These landscape features are best appreciated by looking at areas which today have rapid rates of tectonic movement and frequent volcanic activity, as in eastern Afar and Djibouti. These provide a better analogy for the Plio-Pleistocene environments occupied by early hominids than the present-day landscapes where their fossil remains and artefacts have been discovered. The latter areas are now less active than was the case when the sites were formed. They have also been radically transfomed by ongoing geomorphological processes in the intervening millennia. Thus, previous attempts to reconstruct the local landscape setting adjacent to these early hominid sites necessarily rely on limited geological windows into the ancient land surface and thus tend to filter out small-scale topographic detail because it cannot be reliably identified. It is precisely this local detail that we consider to be of importance in understanding the environmental contribution to co-evolutionary developments

    The Red Sea, Coastal Landscapes, and Hominin Dispersals

    Get PDF
    This chapter provides a critical assessment of environment, landscape and resources in the Red Sea region over the past five million years in relation to archaeological evidence of hominin settlement, and of current hypotheses about the role of the region as a pathway or obstacle to population dispersals between Africa and Asia and the possible significance of coastal colonization. The discussion assesses the impact of factors such as topography and the distribution of resources on land and on the seacoast, taking account of geographical variation and changes in geology, sea levels and palaeoclimate. The merits of northern and southern routes of movement at either end of the Red Sea are compared. All the evidence indicates that there has been no land connection at the southern end since the beginning of the Pliocene period, but that short sea crossings would have been possible at lowest sea-level stands with little or no technical aids. More important than the possibilities of crossing the southern channel is the nature of the resources available in the adjacent coastal zones. There were many climatic episodes wetter than today, and during these periods water draining from the Arabian escarpment provided productive conditions for large mammals and human populations in coastal regions and eastwards into the desert. During drier episodes the coastal region would have provided important refugia both in upland areas and on the emerged shelves exposed by lowered sea level, especially in the southern sector and on both sides of the Red Sea. Marine resources may have offered an added advantage in coastal areas, but evidence for their exploitation is very limited, and their role has been over-exaggerated in hypotheses of coastal colonization

    Earthquake nucleation in the lower crust by local stress amplification

    Get PDF
    Deep intracontinental earthquakes are poorly understood, despite their potential to cause significant destruction. Although lower crustal strength is currently a topic of debate, dry lower continental crust may be strong under high-grade conditions. Such strength could enable earthquake slip at high differential stress within a predominantly viscous regime, but requires further documentation in nature. Here, we analyse geological observations of seismic structures in exhumed lower crustal rocks. A granulite facies shear zone network dissects an anorthosite intrusion in Lofoten, northern Norway, and separates relatively undeformed, microcracked blocks of anorthosite. In these blocks, pristine pseudotachylytes decorate fault sets that link adjacent or intersecting shear zones. These fossil seismogenic faults are rarely >15 m in length, yet record single-event displacements of tens of centimetres, a slip/length ratio that implies >1 GPa stress drops. These pseudotachylytes represent direct identification of earthquake nucleation as a transient consequence of ongoing, localised aseismic creep

    Aftershock Sequences Modeled with 3-D Stress Heterogeneity and Rate-State Seismicity Equations: Implications for Crustal Stress Estimation

    Get PDF
    In this paper, we present a model for studying aftershock sequences that integrates Coulomb static stress change analysis, seismicity equations based on rate-state friction nucleation of earthquakes, slip of geometrically complex faults, and fractal-like, spatially heterogeneous models of crustal stress. In addition to modeling instantaneous aftershock seismicity rate patterns with initial clustering on the Coulomb stress increase areas and an approximately 1/t diffusion back to the pre-mainshock background seismicity, the simulations capture previously unmodeled effects. These include production of a significant number of aftershocks in the traditional Coulomb stress shadow zones and temporal changes in aftershock focal mechanism statistics. The occurrence of aftershock stress shadow zones arises from two sources. The first source is spatially heterogeneous initial crustal stress, and the second is slip on geometrically rough faults, which produces localized positive Coulomb stress changes within the traditional stress shadow zones. Temporal changes in simulated aftershock focal mechanisms result in inferred stress rotations that greatly exceed the true stress rotations due to the main shock, even for a moderately strong crust (mean stress 50 MPa) when stress is spatially heterogeneous. This arises from biased sampling of the crustal stress by the synthetic aftershocks due to the non-linear dependence of seismicity rates on stress changes. The model indicates that one cannot use focal mechanism inversion rotations to conclusively demonstrate low crustal strength (≀10 MPa); therefore, studies of crustal strength following a stress perturbation may significantly underestimate the mean crustal stress state for regions with spatially heterogeneous stress

    Off-fault tip splay networks: A genetic and generic property of faults indicative of their long-term propagation,

    No full text
    International audienceWe use fault maps and fault propagation evidences available in the literature to examine geometrical relations between parent faults and off-fault splays. The population includes 47 worldwide crustal faults with lengths from millimetres to thousands of kilometres and of different slip modes. We show that fault splays form adjacent to any propagating fault tip, whereas they are absent at non-propagating fault ends. Independent of fault length, slip mode, context, etc., tip splay networks have a similar fan shape widening in direction of long-term propagation, a similar relative length and width (∌ 30 and ∌ 10% of parent fault length, respectively), and a similar range of mean angles to parent fault (10–20°). We infer that tip splay networks are a genetic and a generic property of faults indicative of their long-term propagation. Their generic geometrical properties suggest they result from generic off-fault stress distribution at propagating fault ends

    Fault Trace Corrugation and Segmentation as a Measure of Fault Structural Maturity

    No full text
    International audienceAs faults grow over time and become more “mature,” some of their geometrical and mechanical properties evolve, and these changes modify earthquake behavior. It is thus of prime importance to know the degree of structural maturity of a fault that is likely to produce large earthquakes. Although this concept is extensively used, there is no common definition or metric to measure the structural maturity of a fault. We analyzed the heterogeneity of the surface traces of 13 large seismogenic faults whose maturity is known qualitatively. We measured the corrugations and step-over segmentation of the traces from ∌100 m to the fault length scale. Corrugations and some properties of the segmentation are found to vary with fault structural maturity. We provide scaling relationships that quantify the structural maturity of a fault based on its surface trace. These results should help in parameterizing source faults in earthquake models

    Mechanics of normal fault networks subject to slip-weakening friction

    No full text
    International audienceWe seek to understand how the stress interactions and the slip-weakening process combine within a non-coplanar, normal fault network to allow a slip instability to develop, and shape the final slip distribution on the system. In a first part, we perform a non-linear spectral analysis to investigate the conditions of stability and the process of slip initiation in an antiplane non-coplanar fault system subject to a slip-dependent friction law. That numerical model allows determining the zones that are able to slip within a fault network, as well as the location of the stress singularities. The resulting slip profiles on the faults show only a few different shapes, some of them with long, linear sections. This leads to formulate a general classification of slip profiles that can be used to infer the degree of fault interaction within any non-coplanar system. In a second part of work, we use our modelling to try reproducing the cumulative slip profiles measured on three real normal interacting faults forming a large-scale en echelon system. For that, we assume that cumulative slip profiles can be compared to the first static modal solution of our conceptual model. We succeed reproducing the profiles quite well using a variable weakening along the faults. Overall, the weakening rate decreases in the direction of propagation of the fault system. Yet, modelling the slip along the propagating, isolated termination segment of the system requires an unlikely distribution of weakening. This suggests that factors not considered in our analysis may contribute to slip profile shaping on isolated, propagating faults
    • 

    corecore